

COVID-19: Modelling in Yukon

May 26, 2020 Technical Briefing

Current Status

As of May 26, 2020:

- 11 cases (all recovered)
- 0 hospitalizations
- 0 deaths

COVID-19 timeline: public health measures, border security, and major milestones

What is a model?

- Mathematical tools to understand disease progression under various conditions
- Models are not clear predictions of the future, but rather best-guesses based on number of assumptions
- Not <u>every</u> model is appropriate to answer <u>every</u> question at <u>every</u> stage of the outbreak

"...models are not a snapshot of the future. They always describe a range of possibilities and those possibilities are highly sensitive to our actions."

> - Zeynep Tufekci for The Atlantic

Modelling Process

Modelling is a complex and iterative process. We start simple, then get more complex

- 1. Identify a question (e.g. "how many hospital beds will we need?")
- Choose the most appropriate method (e.g. compartmental model or agentbased model)
- 3. Build the model or adopt a model created by experts in another jurisdiction
- 4. Collect data
- 5. Run the model and analyze the model results

Types of Models

- Compartmental (SEIR) models
 - Simple (can be implemented in Excel)
 - Population-level, top-down approach
 - Represent populations in terms of compartments
 - Relies on the exponential growth rate of an epidemic. Most suitable in areas with community transmission.
- Agent-based models
 - Complex (need more computational power, harder to develop and validate)
 - Individual-level, bottom-up approach
 - Model behaviour and interactions of individuals within a population
 - Examines how small changes in behaviour and interactions may influence disease transmission

Compartmental (SEIR) Model Example

Assumptions

- Individuals found in one of four compartments Susceptible to COVID-19, Exposed to COVID-19, Infected with COVID-19, Recovered from COVID-19
- Community transmission will occur
- All individuals belong to one well-mixed population in which individuals are equally likely to encounter each other
- There is no movement between mild, severe, and critical case status
- Individuals do not isolate and remain infectious for entire 7-day infectious period

No public health measures implemented

Assume that for each case, 2.4 more people are infected

No Public Health Measures

*Estimated active cases include all mild (no hospitalization), severe (requiring hospital bed), and critical (requiring ICU).

Health system demand with no public health measures in place

*Estimated active cases requiring a hospital bed, only includes severe cases. It does not include critical cases requiring an ICU bed.

SIR (Old) vs. SEIR (New) Predictions

Peak Active Cases by Model Iteration

Scenario 2

Public health measures implemented 14 days after identification of first case

¹ Within range of values commonly used in Canada.

 2 Jarvis, Zandvoort, Gimma, et al. (2020). Quantifying the impact of physical distance measures on the transmission of COVID-19 in the UK. BMC Medicine. 18:124.

Public health measures implemented 14 days after identification of first case

*Estimated active cases include all mild (no hospitalization), severe (requiring hospital bed), and critical (requiring ICU).

Public Health Measures implemented before identification of first case

Assume that for each case, 0.62 more people are infected, on average

Result: approximately 2.5 cases expected

Next Steps

- Assess the risk of importing new cases
- Run scenarios aligned to restarting phases to assess the effects of relaxing public health measures
- Explore models based on individual behavior, which do not rely on community transmission and better represent Yukon's current reality

Conclusions

- Our actions have made a difference
- We have a unique opportunity to prevent as opposed to control an outbreak
- Modelling can help us balance COVID prevention with prevention of unintended consequences
- The 6 Steps to Stay Safe continue to be paramount in keeping Yukoners healthy

Please visit Yukon.ca/COVID-19 for more information